Abstract
Climate change is posing increasing threats to ecosystems and biodiversity, although direct human actions such as habitat loss and overharvesting have had a larger impact so far. Climate change has led to significant decreases in crop yields in western and southern Europe, ranging from 6.3% to 21.2% for dominant crops. This review article examines the impacts of global climate change on food commodities, focusing on how changing climate patterns affect agricultural production and food availability. The article explores the key drivers of climate change, including rising temperatures, altered precipitation, and extreme weather events, and their direct influence on staple crops, livestock, fisheries, and aquaculture. It discusses the consequences of climate change on food systems, such as crop failures, reduced yields, and diminished quality, as well as the indirect effects on pests, diseases, soil fertility, water availability, and food distribution networks. The article emphasizes the need for urgent adaptation and mitigation strategies, sustainable agricultural practices, technological innovations, and international collaborations to address the challenges posed by climate change on global food security.References
Singhal RK, Bheemanahalli R, Pandey S, Pratibha MD, editors. Impact of High Night Temperature on Plant Biology: Toward Sustainable Plant Adaptation to Climate Change. CRC Press; 2024 Dec 6.
Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J, Arneth A, et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science. 2019;366(6471):eaax3100.DOI: 10.1126/science.aax3100
Smith R, Ahmed A, Liu H. Yield Reductions in Staple Crops due to Temperature Stress. Food Secur Rev. 2023;48(3):211-28.
Kapsenberg L, Cyronak T. Ocean acidification refugia in variable environments. Global Change Biology. 2019;25(10):3201-14. DOI: 10.1111/gcb.14730
Okeke ES, Okoye CO, Atakpa EO, Ita RE, Nyaruaba R, Mgbechidinma CL, et al. Microplastics in agroecosystems-impacts on ecosystem functions and food chain. Resources, Conservation and Recycling. 2022;177:105961. DOI: 10.1016/j.resconrec.2021.105961
Kortsch S, Primicerio R, Aschan M, Lind S, Dolgov AV, Planque B. Food‐web structure varies along environmental gradients in a high‐latitude marine ecosystem. Ecography. 2019;42(2):295-308. DOI: 10.1111/ecog.03443
Johnson L, Doe T. Impact of Temperature Variability on Coffee Quality. Agric Trade J. 2024;67(1):34-49.
Chandio AA, Magsi H, Ozturk I. Examining the effects of climate change on rice production: case study of Pakistan. Environmental Science and Pollution Research. 2020;27(8):7812-22. DOI: 10.1007/s11356-019-07486-9
Pugnaire FI, Morillo JA, Peñuelas J, Reich PB, Bardgett RD, Gaxiola A, et al. Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Science advances. 2019;5(11):eaaz1834. DOI: 10.1126/sciadv.aaz1834
Du Y, Zhang Y, Shi J. Relationship between sea surface salinity and ocean circulation and climate change. Science China Earth Sciences. 2019;62:771-82. DOI: 10.1007/s11430-018-9276-6
Kikstra JS, Waidelich P, Rising J, Yumashev D, Hope C, Brierley CM. The social cost of carbon dioxide under climate-economy feedbacks and temperature variability. Environmental Research Letters. 2021;16(9):094037. DOI: 10.1088/1748-9326/ac1d0b
Singh H, Polvani LM, Rasch PJ. Antarctic sea ice expansion, driven by internal variability, in the presence of increasing atmospheric CO2. Geophysical Research Letters. 2019;46(24):14762-71. DOI: 10.1029/2019GL083758
Letcher TM. Why do we have global warming? Managing global warming: Elsevier; 2019. p. 3- 15. DOI: 10.1016/B978-0-12-814104-5.00001-6
Soeder DJ, Soeder DJ. Fossil fuels and climate change. Fracking and the Environment: A scientific assessment of the environmental risks from hydraulic fracturing and fossil fuels. 2021:155-85. DOI: 10.1007/978-3-030-59121-2_9
Ellwanger JH, Kulmann-Leal B, Kaminski VL, Valverde-Villegas J, VEIGA ABG, Spilki FR, et al. Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious diseases and public health. Anais da Academia Brasileira de Ciências. 2020;92. DOI: 10.1590/0001-3765202020191375
Li Y, Brando PM, Morton DC, Lawrence DM, Yang H, Randerson JT. Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nature communications. 2022;13(1):1964. DOI: 10.1038/s41467-022-29601-0
Wadanambi R, Wandana L, Chathumini K, Dassanayake N, Preethika D, Arachchige U. The effects of industrialization on climate change. J Res Technol Eng. 2020;1(4):86-94.
Gomes VH, Vieira IC, Salomão RP, ter Steege H. Amazonian tree species threatened by deforestation and climate change. Nature Climate Change. 2019;9(7):547-53. DOI: 10.1038/s41558-019-0500-2
Rull V. The deforestation of Easter Island. Biological Reviews. 2020;95(1):124-41. DOI: 10.1111/brv.12556
Shindell D, Smith CJ. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature. 2019;573(7774):408-11. DOI: 10.1038/s41586-019-1554-z
Alves de Oliveira BF, Bottino MJ, Nobre P, Nobre CA. Deforestation and climate change are projected to increase heat stress risk in the Brazilian Amazon. Communications Earth & Environment. 2021;2(1):207. DOI: 10.1038/s43247-021-00275-8
Staal A, Flores BM, Aguiar APD, Bosmans JH, Fetzer I, Tuinenburg OA. Feedback between drought and deforestation in the Amazon. Environmental Research Letters. 2020;15(4):044024. DOI: 10.1088/1748-9326/ab738e
Gatti LV, Basso LS, Miller JB, Gloor M, Gatti Domingues L, Cassol HL, et al. Amazonia as a carbon source linked to deforestation and climate change. Nature. 2021;595(7867):388-93.
Wood N, Roelich K. Tensions, capabilities, and justice in climate change mitigation of fossil fuels. Energy Research & Social Science. 2019;52:114-22. DOI: 10.1016/j.erss.2019.02.014
Malhi GS, Kaur M, Kaushik P. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability. 2021;13(3):1318. DOI: 10.3390/su13031318
Moon I-J, Kim S-H, Chan JC. Climate change and tropical cyclone trend. Nature. 2019;570(7759):E3-E5. DOI: 10.1038/s41586-019-1222-3
Pugatch T. Tropical storms and mortality under climate change. World Development. 2019;117:172-82. DOI : 10.1016/j.worlddev.2019.01.009
Cha EJ, Knutson TR, Lee T-C, Ying M, Nakaegawa T. Third assessment on impacts of climate change on tropical cyclones in the Typhoon Committee Region–Part II: Future projections. Tropical Cyclone Research and Review. 2020;9(2):75-86. DOI: 10.1016/j.tcrr.2020.04.005
Gupta S, Jain I, Johari P, Lal M, editors. Impact of climate change on tropical cyclones frequency and intensity on Indian coasts. Proceedings of International Conference on Remote Sensing for Disaster Management: Issues and Challenges in Disaster Management; 2019: Springer. DOI: 10.1007/978-3-319-77276-9_32
Yoshida Y, Lee HS, Trung BH, Tran H-D, Lall MK, Kakar K, et al. Impacts of mainstream hydropower dams on fisheries and agriculture in lower Mekong Basin. Sustainability. 2020;12(6):2408. DOI: 10.3390/su12062408
Mendenhall E, Hendrix C, Nyman E, Roberts PM, Hoopes JR, Watson JR, et al. Climate change increases the risk of fisheries conflict. Marine Policy. 2020;117:103954. DOI: 10.1016/j.marpol.2020.103954
Free CM, Mangin T, Molinos JG, Ojea E, Burden M, Costello C, et al. Realistic fisheries management reforms could mitigate the impacts of climate change in most countries. PloS one. 2020;15(3):e0224347. DOI: 10.1371/journal.pone.0224347
Cheung WW, Frölicher TL. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Scientific reports. 2020;10(1):1-10. DOI: 10.1038/s41598-020-63650-z
Rosenzweig C, Mbow C, Barioni LG, Benton TG, Herrero M, Krishnapillai M, et al. Climate change responses benefit from a global food system approach. Nature Food. 2020;1(2):94-7. DOI: 10.1038/s43016-020-0031-z
Grossi G, Goglio P, Vitali A, Williams AG. Livestock and climate change: impact of livestock on climate and mitigation strategies. Animal Frontiers. 2019;9(1):69-76. DOI: 10.1093/af/vfy034
Tullo E, Finzi A, Guarino M. Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Science of the total environment. 2019;650:2751-60. DOI: 10.1016/j.scitotenv.2018.10.018
Stenchikov G. The role of volcanic activity in climate and global changes. Climate change: Elsevier; 2021. p. 607-43. DOI: 10.1016/B978-0-12-821575-3.00029-3
Hegerl GC, Brönnimann S, Cowan T, Friedman AR, Hawkins E, Iles C, et al. Causes of climate change over the historical record. Environmental Research Letters. 2019;14(12):123006. DOI: 10.1016/B978-0-12-821575-3.00029-3
Gil V, Gaertner MA, Gutierrez C, Losada T. Impact of climate change on solar irradiation and variability over the Iberian Peninsula using regional climate models. International Journal of Climatology. 2019;39(3):1733-47. DOI: 10.1002/joc.5916
Moumen, Z., El Idrissi, N.E.A., Tvaronavičienė, M., Lahrach, A. (2019): Water security and sustainable development. Insights into Regional Development 1(4); 301-317. DOI: 10.9770/ird.2019.1.4(2)
Du, Y., Y. Zhang, and J. Shi, Relationship betthheyen sea surface salinity and ocean circulation and climate change. Science China Earth Sciences, 2019. 62: p. 771-782. DOI: 10.1007/s11430-018-9276-6
Grimm, N.B., et al., The impacts of climate change on ecosystem structure and function. Frontiers in Ecology and the Environment, 2013. 11(9): p. 474-482. DOI: 10.1890/120282
Karp, Karp`, D.J. What is the responsibility to respect human rights? Reconsidering the ‘respect`, protect`, and fulfill’ framework. Int. Cavicchioli, R., et al., Scientists’ warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 2019. 17(9): p. 569-586. DOI: 10.1017/S1752971919000198
Aryal, J.P., et al., Climate change and agriculture in South Asia: Adaptation options in smallholder production systems. Environment, Development and Sustainability, 2020. 22(6): p. 5045-5075. DOI: 10.1007/s10668-019-00414-4
L. Mandle, Z. Ouyang, J. Salzman, G. C. Daily, Green Growth That Works: Natural Capital Policy and Finance Mechanisms from Around the World (Island Press, 2019). DOI: 10.5822/978-1-64283-004-0
Bratman GN, Anderson CB, Berman MG, Cochran B, De Vries S, Flanders J, et al. Nature and mental health: An ecosystem service perspective. Science advances. 2019;5(7):eaax0903. DOI: 10.1126/sciadv.aax0903
Wasko, C., Nathan, R. & Peel, M. C. Changes in antecedent soil moisture modulate food seasonality in a changing climate. Water Resour. Res. https://doi.org/10.1029/2019WR026300 (2020). DOI: 10.1029/2019WR026300
Al-Shammari N, Willoughby J (2019) Determinants of political instability across Arab spring countries. Mediterr Politics 24:196–217. DOI: 10.1080/13629395.2017.1389349
Harmanny KS, Malek Ž (2019) Adaptations in irrigated agriculture in the Mediterranean region: an overview and spatial analysis of implemented strategies. Reg Environ Chang 19:1401–1416. DOI: 10.1007/s10113-019-01494-8
Connection Rainforest. 2021. Rainforest Connection. Retrieved from https://rfcx.org
Zamba Project. 2019. Project Zamba Computer Vision for Wildlife Research & Conservation. Retrieved from https://zamba.drivendata.org/.
Prasad Gautam, Vuyyuru Upendra Reddy, and Gupta Mithun Das. 2019. Agriculture commodity arrival prediction using remote sensing data: insights and beyond. In KDD Feed Workshop 2019. DOI: 10.48550/arXiv.1906.07573
PowerTAC. 2019. PowerTAC. Retrieved from https://powertac.org/
PlantSnap. 2021. PlantSnap. Retrieved from https://www.plantsnap.com/.
Pinto Giuseppe, Piscitelli Marco Savino, Vázquez-Canteli José Ramón, Nagy Zoltán, and Capozzoli Alfonso. 2021. Coordinated energy management for a cluster of buildings through deep reinforcement learning. Energy 229 (2021), 120725. DOI: 10.1016/j.energy.2021.120725
Pearl Judea. 2019. The seven tools of causal inference, with reflections on machine learning. Communications of the ACM 62, 3 (2019), 54–60. DOI: 10.1145/3241036
Rolnick D, Donti PL, Kaack LH, Kochanski K, Lacoste A, Sankaran K, et al. Tackling climate change with machine learning. ACM Computing Surveys (CSUR). 2022;55(2):1-96. DOI: 10.1145/3485128
Abdulla A et al (2019) Limits to deployment of nuclear power for decarburization: insights from public opinion. Energy Policy 129:1339–1346. DOI: 10.1016/j.enpol.2019.03.039
Arning K et al (2019) Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany. Energy Policy 125:235–249. DOI: 10.1016/j.enpol.2018.10.039
Bach LT et al (2019) CO2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and co-benefits for marine pelagic ecosystems. DOI: 10.3389/fclim.2019.00007
Bustreo C et al (2019) How fusion power can contribute to a fully decarbonized European power mix after 2050. Fusion Eng Des 146:2189–2193.
Chen H et al (2019) Upcycling food waste digestate for energy and heavy metal remediation applications. Resour Conserv Recycl X 3:100015.
CRED (2019) Natural disasters 2018. CRED, Brussels.
De Oliveira Garcia W et al (2019) Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology. Biogeosci Discuss 2019
El-Naggar A et al (2019) Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma 337:536–554. DOI: 10.1016/j.geoderma.2018.09.034
Rinke, K., Keller, P. S., Kong, X., Borchardt, D. & Weitere, M. in Atlas of Ecosystem Services: Drivers, Risks, and Societal Responses (eds Schröter, M., Bonn, A., Klotz, S., Seppelt, R. & Baessler, C.) 191–195 (Springer, 2019)
Sharma, S. et al. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nat. Clim. Change 9, 227–231 (2019). DOI: 10.1038/s41558-018-0393-5
Woolway, R. I. & Merchant, C. J. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 12, 271–276 (2019). DOI: 10.1038/s41561-019-0322-x
Lopez, L. S., Hewitt, B. A. & Sharma, S. Reaching a break point: how is climate change influencing the timing of ice break-up in lakes across the Northern Hemisphere. Limnol. Oceanogr. 64, 2621–2631 (2019). DOI: 10.1002/lno.11239
Woolway RI, Kraemer BM, Lenters JD, Merchant CJ, O’Reilly CM, Sharma S. Global lake responses to climate change. Nature Reviews Earth & Environment. 2020;1(8):388-403. DOI: 10.1038/s43017-020-0067-5
Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, Chatterjee S. Climate change has likely already affected global food production. PloS one. 2019;14(5):e0217148. DOI: 10.1371/journal.pone.0217148
Deligios, P.A.; Chergia, A.P.; Sanna, G.; Solinas, S.; Todde, G.; Narvarte, L.; Ledda, L. Climate change adaptation and water saving by innovative irrigation management applied on open field globe artichoke. Sci. Total Environ. 2019, 649, 461–472. DOI: 10.1016/j.scitotenv.2018.08.349
Hosseinzadehtalaei, P., Tabari, H. & Willems, P. Regionalization of anthropogenically forced changes in 3 hourly extreme precipitation over Europe. Environ. Res. Lett. 14(12), 124031 (2019). DOI: 10.1088/1748-9326/ab5638
Roderick, T. P., Wasko, C. & Sharma, A. Atmospheric moisture measurements explain increases in tropical rainfall extremes. Geophys. Res. Lett. 46(3), 1375–1382 (2019). DOI: 10.1029/2018GL080833
Tabari, H., Hosseinzadehtalaei, P., AghaKouchak, A. & Willems, P. Latitudinal heterogeneity and hotspots of uncertainty in projected extreme precipitation. Environ. Res. Lett. 14, 124032 (2019). DOI: 10.1088/1748-9326/ab55fd
Norris, J., Chen, G. & Neelin, J. D. Termodynamic versus dynamic controls on extreme precipitation in a warming climate from the community earth system model large ensemble. J. Clim. 32, 1025–1045 (2019). DOI: 10.1175/JCLI-D-18-0302.1
Li, C. et al. Larger increases in more extreme local precipitation events as climate warms. Geophys. Res. Lett. 46(12), 6885–6891 (2019). DOI: 10.1029/2019GL082908
NOAA. Earth System Research Laboratory (NOAA). 2020. Available online: www.esrl.noaa.gov (accessed on 15 December 2020).
CDIAC. Carbon Dioxide Information Analysis Center. 2020. Available online: www.cdiac.ess- dive.lbl.gov (accessed on 13 November 2020).
NASA Earth Observatory. Goddard Space Flight Centre United States. Available online: www.earthobservatory.nasa.gov (accessed on 15 May 2020).
Our World in Data. Available online: www.ourworldindata.org (accessed on 4 December 2020).
Richie, H.; Roser, M. Our World in Data. CO2 and Greenhouse Emissions. 2017. Available online: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (accessed on 12 November 2020).
Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14, e0217148. DOI: 10.1371/journal.pone.0217148
Bajwa, A.A.; Farooq, M.; Al-Sadi, A.M.; Nawaz, A.; Jabran, K.; Siddique, K.H.M. Impact of climate change on biology and management of wheat pests. Crop Prot. 2020, 137, 105304. DOI: 10.1016/j.cropro.2020.105304
Sandhu, S.S.; Kaur, P.; Gill, K.K.; Vashisth, B.B. The effect of recent climate shifts on optimal sowing windows for wheat in Punjab, India. J. Water Clim. Chang. 2019, 11, 1177–1190. DOI: 10.2166/wcc.2019.241
Chandio, A.A., Jiang, Y., Rauf, A., Mirani, A.A., Shar, R.U., Ahmad, F. and Shehzad, K. (2019), “Does energy-growth and environment quality matter for agriculture sector in Pakistan or not? an application of cointegration approach”, Energies, Vol. 12 No. 10, pp. 1879. DOI: 10.3390/en12101879
Rehman, A., Rauf, A., Ahmad, M., Chandio, A.A. and Deyuan, Z. (2019), “The effect of carbon dioxide emission and the consumption of electrical energy, fossil fuel energy, and renewable energy, on economic performance: evidence from Pakistan”, Environmental Science and Pollution Research, pp. 1- 14. DOI: 10.1007/s11356-019-05550-y
Making Real Options Analysis more accessible for climate change adaptation. An application to afforestation as a flood management measure in the Scottish Borders. J. Environ. Manage. (2019). DOI: 10.1016/j.jenvman.2019.05.077
Wreford A, Topp CF. Impacts of climate change on livestock and possible adaptations: A case study of the United Kingdom. Agricultural Systems. 2020;178:102737. DOI: 10.1016/j.agsy.2019.102737
A.A. Chandio, Y. Jiang, A. Rehman, A. Rauf Short and long-run impacts of climate change on agriculture: an empirical evidence from China Int. J. Clim. Change Strategies Manage., 12 (2020), pp. 201-221. DOI: 10.1108/IJCCSM-05-2019-0026
Falco et al., 2019 C. Falco, M. Galeotti, A. Olper Climate change and migration: Is agriculture the main channel? Global Environ. Change, 59 (2019), Article 101995. DOI: 10.1016/j.gloenvcha.2019.101995
A. Feist, R. Plummer, J. Baird, S.J. Mitchell Examining collaborative processes for climate change adaptation in New Brunswick, Canada Environ. Manage., 1–13 (2020). DOI: 10.1007/s00267-020-01284-7
Gollehon, N.R., Moore, M. R., AiLLery, M., Kramer, M., Schaible, G., 2019. Modeling Western Irrigated Agriculture and Water Policy: Climate-Change Considerations. In Economic Issues in Global Climate Change (pp. 148–167). CRC Press. DOI: 10.1201/9780429041396-9
A. Kuriqi, A.N. Pinheiro, A. Sordo-Ward, L. Garrote. Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants Appl. Energy, 256 (2019), Article 113980, DOI: 10.1016/j.apenergy.2019.113980
A. Kuriqi, A.N. Pinheiro, A. Sordo-Ward, L. Garrote Influence of hydrologically based environmental flow methods on flow alteration and energy production in a run-of-river hydropower plant J. Clean. Prod., 232 (2019), pp. 1028-1042,
S. Li, C. Zhou, S. Wang Does modernization affect carbon dioxide emissions? A panel data analysis Sci. Total Environ., 663 (2019), pp. 426-435, DOI: 10.1016/j.jclepro.2019.05.358
A. Rehman, H. Ma, M. Irfan, M. Ahmad Does carbon dioxide, methane, nitrous oxide, and GHG emissions influence the agriculture? Evidence from China Environ. Sci. Pollut. Res., 1–12 (2020), DOI: 10.1007/s11356-020-08912-z
A. Rehman, H. Ma, I. Ozturk Decoupling the climatic and carbon dioxide emission influence to maize crop production in Pakistan Air Qual. Atmos. Health, 1–13 (2020). DOI: 10.1007/s11869-020-00884-w
A. Rehman, I. Ozturk, D. Zhang. The causal connection between CO2 emissions and agricultural productivity in Pakistan: empirical evidence from an autoregressive distributed lag bounds testing approach. Appl. Sci., 9 (2019), p. 1692. DOI: 10.1007/s11869-020-00884-w
R. Ulucak, Y. Kassouri. An assessment of the environmental sustainability corridor: Investigating the non-linear effects of environmental taxation on CO2 emissions. Sustain. Devel. (2020). DOI: 10.1002/sd.2057
Tirado MC, Clarke R, Jaykus LA, McQuatters-Gollop A, Frank JM. Climate change and food safety: A review. Food Research International. 2010 Aug 1;43(7):1745-65. DOI: 10.1016/j.foodres.2010.07.003

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2025 Noor Ul Ain Shah, Sadia Sabir, Muhammad Adnan Hafeez, Mariam Khan, Raheel suleman, Muhammad Fahad Tariq